Weak solutions of semilinear elliptic equation involving Dirac mass
نویسندگان
چکیده
منابع مشابه
Separation property of solutions for a semilinear elliptic equation
In this paper, we study the following elliptic problem ∆u+K(x)u p = 0 in R u > 0 in R (∗) where K(x) is a given function in Cα(R \ 0) for some fixed α ∈ (0, 1), p > 1 is a constant. Some existence, monotonicity and asymptotic expansion at infinity of solutions of (∗) are discussed. ∗Research supported in part by the Natural Science Foundation of China and NSFC †Research supported in part b...
متن کاملMultiple solutions for an inhomogeneous semilinear elliptic equation in R
In this paper, we will investigate the existence of multiple solutions for the general inhomogeneous elliptic problem − u+ u = f (x, u) + μh (x) , x ∈ R , u ∈ H (RN) , (1.1)μ where h ∈ H−1 (RN), N ≥ 2, |f (x, u)| ≤ C1up−1 + C2u with C1 > 0, C2 ∈ [0, 1) being some constants and 2 < p < +∞. ∗Research supported in part by the Natural Science Foundation of China and NSEC †Research supported ...
متن کاملSemilinear fractional elliptic equations involving measures
We study the existence of weak solutions to (E) (−∆)u+g(u) = ν in a bounded regular domain Ω in R (N ≥ 2) which vanish in R \Ω, where (−∆) denotes the fractional Laplacian with α ∈ (0, 1), ν is a Radon measure and g is a nondecreasing function satisfying some extra hypotheses. When g satisfies a subcritical integrability condition, we prove the existence and uniqueness of a weak solution for pr...
متن کاملMultiple Nontrivial Solutions of Elliptic Semilinear Equations
We find multiple solutions for semilinear boundary value problems when the corresponding functional exhibits local splitting at zero.
متن کاملSingular Solutions for some Semilinear Elliptic Equations
We are concerned with the behavior of u near x = O. There are two distinct cases: 1) When p >= N / ( N -2) and (N ~ 3) it has been shown by BR~ZIS & V~RON [9] that u must be smooth at 0 (See also BARAS & PIERRE [1] for a different proof). In other words, isolated singularities are removable. 2) When 1-< p < N / ( N 2) there are solutions of (1) with a singularity at x ---0. Moreover all singula...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales de l'Institut Henri Poincaré C, Analyse non linéaire
سال: 2018
ISSN: 0294-1449
DOI: 10.1016/j.anihpc.2017.08.001